Ground Fault Interrupter

Description

The FAN4146 is a low-power controller for AC outlet Appliance Leakage Circuit Interrupters (ALCI) and two-wire Residual Current Devices (RCD). The FAN4146 detects hazardous grounding conditions and open circuits the line before a harmful shock occurs.

Internally, the FAN4146 contains a diode rectifier, precision bandgap 12 V shunt regulator, precision low V_{OS} offset-sense amplifier, time delay noise filter, window-detection comparators, and a SCR driver. With the addition of a minimum number of external components, the FAN4146 detects and protects against a hot-wire-to-ground fault. The minimum number of components and the small SUPERSOT $^{\text{\tiny TM}}$ package allow for a small-form-factor, low-cost application solution.

The FAN4146 circuitry has a built-in rectifier and shunt regulator that operates with a low quiescent current. This allows for a high-value, low-wattage-series supply resistor. The internal temperature compensated shunt regulator, sense amplifier, and bias circuitry provide for precision ground-fault detection. The low $V_{\rm OS}$ offset-sense amplifier allows direct coupling of the sense coil to the amplifier's feedback signal. This eliminates the large 50/60 Hz AC-coupling capacitor. The internal delay filter rejects high-frequency noise spikes common with inductive loads. This decreases false nuisance tripping. The internal SCR driver is temperature compensated and designed to satisfy the current requirements for a wide selection of external SCRs.

The minimum number of external components and the 6-pin SUPERSOT package enable for a low-cost, compact design and layout. The FAN4146ESX is an enhanced temperature range device.

Features

- For Two-wire ALCI and RCD Applications
- Precision Sense Amplifier and Bandgap Reference
- Built-in AC Rectifier
- Direct DC Coupled to Sense Coil
- Built-in Noise Filter
- Low-voltage SCR Disable
- SCR Gate Driver
- Adjustable Sensitivity
- Minimum External Components
- Meets UL 943B Requirements
- Ideal for 120 V or 220 V Systems
- Space-saving SUPERSOT 6-pin Package
- These Devices are Pb-Free and are RoHS Compliant

Applications

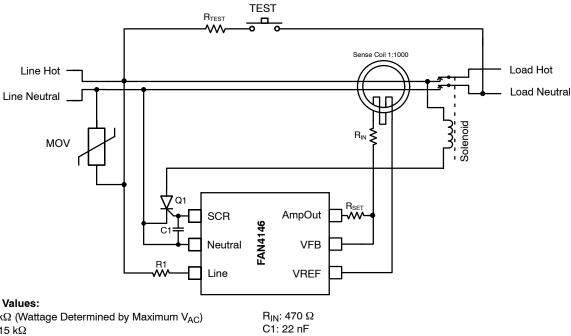
- Personal Care Products
- Two-wire Electrical Outlets, Circuit Breakers, and Power Cords Requiring GFI Safety Features
- ALCI and RCCB Circuits

ON Semiconductor®

www.onsemi.com

TSOT23 6-Lead CASE 419BL

MARKING DIAGRAM


XXX = Specific Device Code

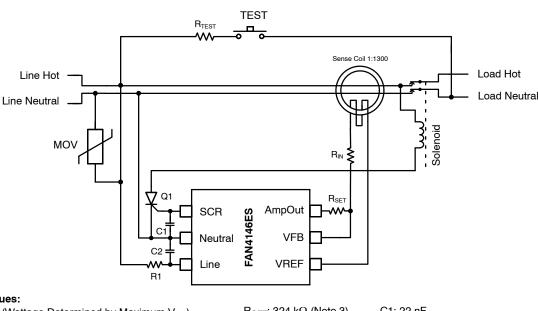
M = Date Code= Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

TYPICAL APPLICATIONS

Typical Values:


R1: 91 kΩ (Wattage Determined by Maximum V_{AC})

 R_{TEST} : 15 $k\Omega$

 R_{SET} : 511 k Ω (Note 1)

- 1. Value depends on sense-coil characteristics and application (value chosen for 5 mA trip threshold).
- 2. Contact ON Semiconductor for best application practices for nuisance tripping rejection.

Figure 1. 120/220 V_{AC} ALCI Application (Note 2)

Typical Values:

R1: 174 k Ω (Wattage Determined by Maximum V_{AC}) R_{TEST} : 15 $k\Omega$

 $\text{R}_{\text{SET}}\!\!:$ 324 k $\!\Omega$ (Note 3) R_{IN}: 470 Ω

C1: 22 nF C2: 10 nF

Notes:

- 3. Value depends on sense-coil characteristics and application (value chosen for 10 mA trip threshold).
- 4. Contact ON Semiconductor for best application practices for nuisance tripping rejection.

Figure 2. 220 V_{AC} RCD Application (Note 4)

BLOCK DIAGRAM

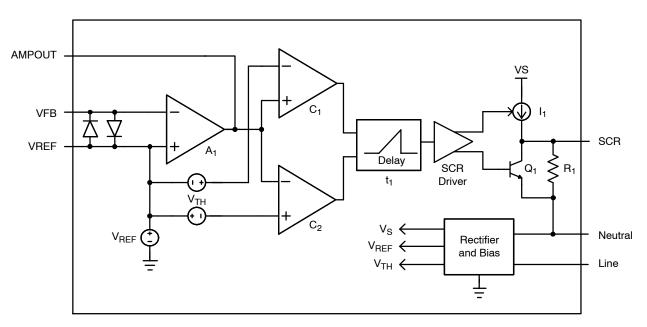


Figure 3. Block Diagram

PIN CONFIGURATION

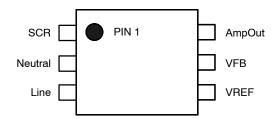


Figure 4. Pin Configuration

PIN DEFINITIONS

Pin #	Name	Description	
1	SCR	Gate drive for external SCR	
2	Neutral	Supply input for FAN4146 circuitry	
3	Line	Supply input for FAN4146 circuitry	
4	VREF	Non-inverting input for current-sense amplifier	
5	VFB	Inverting input for current-sense amplifier	
6	AmpOut	External resistor connected to VFB sets the I _{fault} sensitivity threshold	

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Condition	Min	Max	Unit
Icc	Supply Current		Continuous Current, Line to Neutral	-	15	mA
Vcc	Supply Voltage		Continuous Voltage, Line to Neutral	-1.5	16.0	V
		All other pins	Continuous Voltage to Neutral	-0.8	15.0	V
Тѕтс	Storage Temperature Range			-65	+150	°C
ESD	Electrostatic Discharge Capability		Human Body Model, JESD22-A114	_	2500	V
			Charged Device Model, JESD22-C101	-	1000	
			Machine Model, JESD22-A115	-	200	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, T_A = 25°C, I_{shunt} = 1 mA.)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VREG	Power Supply Shunt	Line to Neutral	12.2	12.7	13.2	V
	Regulator Voltage	Line to Neutral, I _{shunt} = −2 mA	-0.9	-0.7	-	V
IQ	Quiescent Current	Line to Neutral = 10 V	350	400	450	μΑ
VREF	Reference Voltage	V _{REF} to Neutral	5.8	6.0	6.2	V
VTH	Trip Threshold	AmpOut to V _{REF}	3.4	3.5	3.6	V
Vos	Amplifier Offset	R_{SET} = 511 kΩ, R_{IN} = 500 Ω	-450	0	450	μV
los	Amplifier Input Offset (Note 5)	Design Value	-50	0	50	nA
G	Amplifier DC Gain (Note 5)	Design Value	-	100	-	dB
fgBW	Amplifier Gain Bandwidth (Note 5)	Design Value	-	1.5	-	MHz
Vsw+	Amplifier Positive Voltage Swing	AmpOut to V _{REF} , I _{FAULT} = 10 μA	4.0	-	-	V
Vsw-	Amplifier Negative Voltage Swing	V _{REF} to AmpOut, I _{FAULT} = −10 μA	4.0	-	-	V
ISINK	Amplifier Current Sink	$\begin{aligned} &AmpOut = V_{REF} + 3 \; V, \\ &V_{FB} = V_{REF} + 100 \; mV \end{aligned}$	400	-	-	μΑ
ISRL	Amplifier Current Source	$\begin{array}{l} \text{AmpOut} = \text{V}_{\text{REF}} - 3 \text{ V}, \\ \text{V}_{\text{FB}} = \text{V}_{\text{REF}} - 100 \text{ mV} \end{array}$	400	-	-	μΑ
t _d	Delay Filter	Delay from C ₁ Trip to SCR, LOW to HIGH	0.75	1.00	1.25	ms
Rout	SCR Output Resistance	SCR to Neutral = 250 mV, AmpOut = V _{REF}	_	0.5	1.0	kΩ
Vout	SCR Output Voltage	SCR to Neutral, AmpOut = V _{REF}	-	1	10	mV
		SCR to Neutral, AmpOut = V _{REF} + 4 V	2.5	-	-	V
Іоит	SCR Output Current	SCR to Neutral = 1 V, AmpOut = V _{REF} + 4 V	350	500	-	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{5.} Guaranteed by design; not tested in production.

FUNCTIONAL DESCRIPTION

(Refer to Figure 1 and Figure 3)

The FAN4146 is a two-wire GFCI controller for AC ground-fault-circuit interrupters. The internal rectifier circuit is biased by the AC line during the positive half cycle of the AC line voltage. The internal 12 V shunt regulator uses a precision temperature-compensated bandgap reference. The combination of precision reference circuitry and precision sense amplifier provides for an accurate ground-fault tolerance. This allows for selection of external components with wider and lower-cost parameter variation. Due to the low quiescent current, a high value external series resistor (R_1) can be used which reduces the maximum power wattage required for this resistor. The 12 V shunt regulator generates the reference voltage V_{REF} for the sense amplifier's (A₁) non-inverting input (AC ground reference) and supplies the bias for the delay timer (t_1) , comparators $(C_1 \& C_2)$, and the SCR driver.

The secondary winding of the sense transformer is directly DC coupled to the inverting input of the sense amplifier at pin 5 (V_{FB}). The R_{SET} resistor converts the sense transformer's secondary current to a voltage at pin 6 (AmpOut). This voltage is compared to the internal window comparator (C₁ & C₂) and, when the AmpOut voltage exceeds the ±V_{TH} threshold voltage, the window comparator triggers the internal delay timer. The output of the window comparator must stay HIGH for the duration of the t₁ timer. If the window comparator's output momentarily goes LOW, the t₁ timer resets. If the window comparator's output is still HIGH at the end of the t₁ pulse, the SCR driver enables the current source I₁ and disables Q₁. The current source I₁ then enables the external SCR, which energizes the solenoid, opens the contact switches to the load, and removes the hazardous ground fault. The window comparator allows detection of a positive or negative IFAULT signal independent from the phase of the line voltage. An internal under-voltage lockout circuit disables the SCR driver if the voltage at pin 3 (LINE) is below 7.5 V. This prevents the SCR from energizing the solenoid when the SCR's anode voltage is below 65 V.

The sense transformer typically has a toroidal core made of laminated steel rings or solid ferrite material. The secondary of the transformer is typically 1000 turns of #40 wire wound through the toroid. The primary is typically one turn made by passing the AC hot and neutral wires through the center of the toroid. When a ground fault exists, a difference exists between the current flowing in hot and neutral wires. The primary difference current divided by the primary-to-secondary turns ratio is the current that flows through the secondary wire of the transformer.

Calculation of R_{SET} Resistor

The AmpOut signal must exceed the window comparator's V_{TH} threshold voltage for longer than the delay timer and calculated by:

$$V_{TH} = I_{FAULT} \times 1.41 \times R_{SET} \times \frac{\cos\left(2\pi \times \frac{t}{2P}\right)}{N}$$
 (eq. 1

$$\mathsf{R}_{\mathsf{SET}} = \frac{\mathsf{V}_{\mathsf{TH}} \times \mathsf{N}}{\mathsf{1.41} \times \mathsf{I}_{\mathsf{FAULT}} \times \cos\left(\pi \times \frac{\mathsf{t}}{\mathsf{P}}\right)} \tag{eq. 2}$$

where:

 $V_{TH} = 3.5 V$

 I_{FAULT} = 5 mA (UL943B) t = 1 ms (timer delay)

P = Period of the AC Line (1/60 Hz)

N = Ratio of secondary to primary turns (1000:1)

 R_{SET} = 505 k Ω (511 k Ω standard 1% value).

In practice, the transformer is non-ideal, so R_{SET} may need to be adjusted by up to 30% to obtain the desired I_{fault} trip threshold.

Calculation of V_{OS} Trip Threshold Error

Since the sense coil is directly connected to the feedback of the sense amplifier, the V_{OS} offset introduces an I_{fault} threshold error. This error can be calculated as follows:

$$\% Error = 100 \times \frac{\frac{V_{OS} \times R_{SET}}{R_{IN} + RL_{OC} + RL_{AC}}}{V_{TH}}$$
 (eq. 3)

where:

 $V_{OS} = \pm 450 \,\mu\text{V} \text{ (worst case)}$

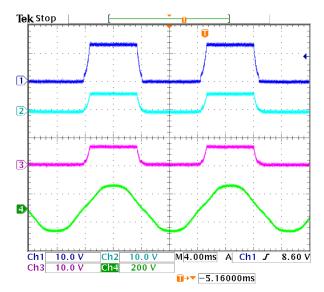
= $\pm 150 \,\mu\text{V}$ (typical)

 $R_{SET} = 511 \text{ k}\Omega$

 $R_{IN} = 470 \Omega \text{ (typical value)}$

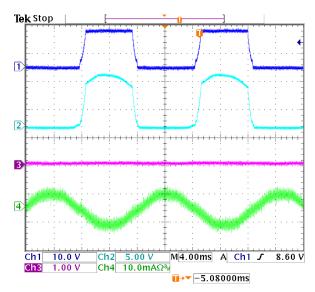
RL_{DC} = 75 Ω (sense coil secondary DC resistance) RL_{AC} = 1.5 kΩ (AC_(jωL) impedance of sense coil),

L = 4 H, f = 60 Hz


 $V_{TH} = 3.5 V$

%Error = $\pm 3.2\%$ (worst case)

= 1.1% (typical).


TYPICAL PERFORMANCE CHARACTERISTICS

(Unless otherwise specified, T_A = 25°C and according to Figure 1 with SCR disconnected.)

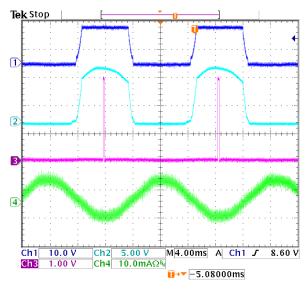

Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 10 V/Div Ch3: V_{REF} (Pin 4), 10 V/Div Ch4: V_{AC} Input, 200 V/Div

Figure 5. Typical Waveforms, No Ground Fault

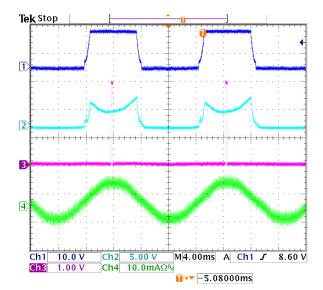
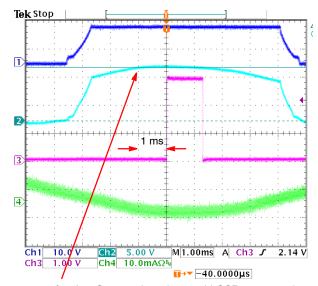
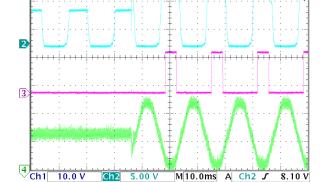

Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 1 V/Div Ch4: I_{FAULT}, 10 mA/Div

Figure 6. Typical Waveforms, 4 mA Ground Fault

Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 1 V/Div Ch4: I_{FAULT}, 10 mA/Div

Figure 7. Typical Waveforms, 5 mA Ground Fault


Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 1 V/Div Ch4: I_{FAULT}, 10 mA/Div


Figure 8. Typical Waveforms, 5 mA Ground Fault (Line Polarity Reversal)

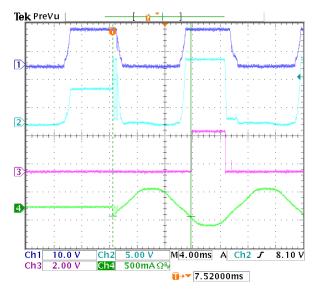
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

(Unless otherwise specified, $T_A = 25$ °C and according to Figure 1 with SCR disconnected.)

Tek PreVu

Ch4 10.0mAΩ%

1 ms after AmpOut signal reaches 9.5 V, SCR is triggered.


Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 1 V/Div Ch4: I_{FAULT}, 10 mA/Div Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 2 V/Div Ch4: I_{FAULT}, 10 mA/Div

2.00 V

Figure 9. AmpOut Threshold, Internal 1 ms Delay

II→▼ 13.7600ms

Ch1: V_{Line} (Pin 3), 10 V/Div Ch2: AmpOut (Pin 6), 5 V/Div Ch3: SCR (Pin 1), 2 V/Div Ch4: I_{FAULT}, 500 mA/Div

Figure 11. 500 Ω Ground Fault (Notes 6, 7)

Notes:

- 6. Maximum trip time ~12 ms.
- 7. Fault occurs at the end of the positive AC cycle.

TYPICAL TEMPERATURE CHARACTERISTICS (FAN4146E)

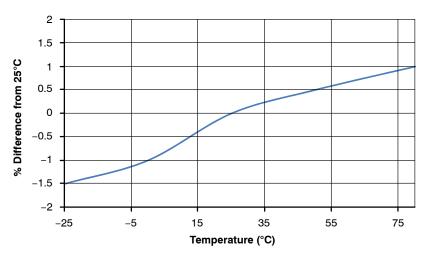


Figure 12. VThreshold (V_{TH}) vs. Temperature

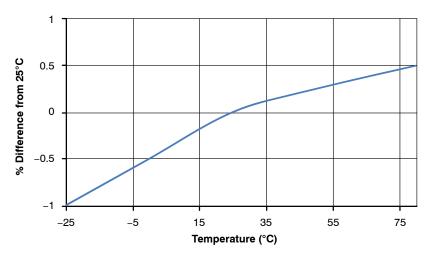


Figure 13. VReference (V_{REF}) vs. Temperature

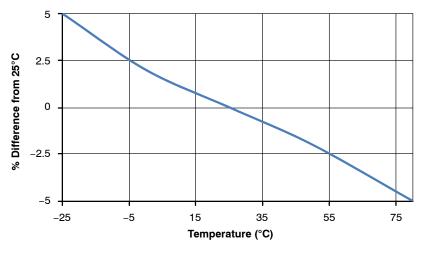
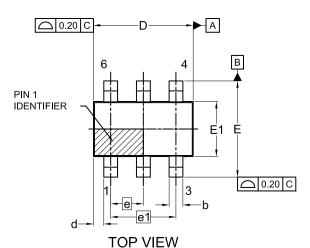


Figure 14. SCR Output Current (I_{OUT}) vs. Temperature

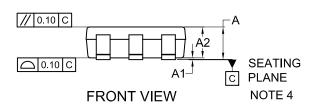
ORDERING INFORMATION

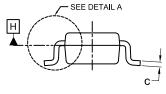
Part Number	Operating Temperature Range	Package	Shipping (Qty / Packing) [†]
FAN4146SX	0°C to +70°C	TSOT23 6-Lead (Pb-Free)	3,000 / Tape & Reel
FAN4146ESX	-35°C to +85°C	TSOT23 6-Lead (Pb-Free)	3,000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

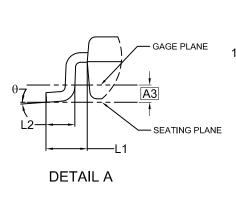
SUPERSOT is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

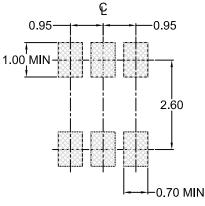
TSOT23 6-Lead CASE 419BL **ISSUE O**


DATE 20 MAR 2018



NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25MM PER END. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.


DIM	MILLIMETERS			
D.I.V.	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
A1	0.00	0.05	0.10	
A2	0.70	0.85	1.00	
A3	0.25 BSC			
b	0.30	0.40	0.50	
С	0.08	0.14	0.20	
D	2.80	2.90	3.00	
d	0.30 REF			
Е	2.60	2.80	3.00	
E1	1.50	1.60	1.70	
е	0.95 BSC			
e1	1.90 BSC			
L1	0.60 REF			
L2	0.35	0.45	0.55	
Φ	0°	_	8°	

SIDE VIEW

SYMM

GENERIC MARKING DIAGRAM*

LAND PATTERN RECOMMENDATION XXX = Specific Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON83292G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOT23 6-Lead		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative